

RN-003-001541 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

February - 2019

Statistics: Paper - S - 501

(Comptu. Tech. & Stat. Toolbox with Matlab.) (Old Course)

> Faculty Code: 003 Subject Code: 001541

	•
Time:	$2\frac{1}{2}$ Hours] [Total Marks : 70
Instruc	tions: (1) All questions are compulsory.
	(2) Question no. 1 carries 20 marks and Question No. 2 and 3 carry 25 marks.
	(3) Student can use their (own) scientific calculator
1 Fill	ling the blanks and short questions : (each 1 mark) 20
1.	Lagrange's formula does not require not require the construction of table.
2.	For interpolation or extrapolation, the two variables should have relationship.
3.	Newton's - Gauss forward formula is also known as polynomial formula.
4.	The (n + 1) th order finite difference of a n th order polynomial is
5.	Newton's formula for advancing differences utilizes finite difference of each column of the difference table.
6.	Interpolation helps to estimate the value in series of data.
7.	The independent variate values in the interpolation are termed as
8.	The relation between u of Striling formula and v of Bessel's formula is

- 9. If the interpolating values lies near the beginning or the end of the central interval, _____ formula yields better results.
- 10. In Weddle's rule, f(x) is a polynomial of _____.
- 11. Define Forward difference operator.
- 12. Define Mean or Average operator.
- 13. Define Interpolation.
- 14. Usual notations prove that $(1 + \Delta) (1 \nabla) = 1$.
- 15. Usual notations prove that $E \nabla = \Delta$.
- 16. Usual notations prove that $\Delta^m \Delta^n = \Delta^{m+n}$.
- 17. If $x = [3 \ 7 \ 5; \ 0 \ 4 \ 2]$ then using MATLAB function sort $(x, \ 1, \ 2)$ write is correct output?
- 18. If $x = [3 \ 3 \ 5; \ 3 \ 6 \ 3]$ then using MATLAB function mode $(x, \ 2)$ write is correct output?
- 19. If $x = [0 \ 1 \ 2; \ 3 \ 4 \ 5]$ then using MATLAB function sum $(x, \ 1)$ write is correct output?
- 20. If $x = [1 \ 3 \ 9; \ 4 \ 6 \ 8]$ then using MATLAB function std $(x, \ 0, \ 2)$ write is correct output?
- 2 (a) Write the answer any three: (Each 2 marks)

6

- 1. Obtain Newton's formula for obtaining inverse.
- 2. If $y = 1 + x^2$ then find f (1, 5, 7, 11) and prepare the divided difference table.
- 3. Usual notation prove that

$$\mu \delta = \frac{1}{2} \left[\Delta + \nabla \right] = \frac{1}{2} \left[\Delta + \Delta E^{-1} \right].$$

- 4. Explain MATLAB function binopdf.
- 5. Prove that $f(x) = \frac{\Delta^n f(x)}{h^n n!}$.
- 6. Explain MATLAB function geomean.

(b) Write the answer any three: (Each 3 marks)

9

- 1. Usual notation prove that $\sqrt{1 + \mu^2 \delta^2} = 1 + \frac{\delta^2}{2}$.
- 2. Explain MATLAB function prod and cumprod.
- 3. Evaluate $\int_0^{10} \frac{1}{1+x^2} dx$ by using Trapezoidal rule.
- 4. Explain Talyor's series method.
- 5. Apply Euler's Maclurin sum formula to find the sum $1^3 + 2^3 + 3^3 + ... + n^3$.
- 6. Obtain Lagrange's Interpolation formula.
- (c) Write the answer any two: (Each 5 marks) 10
 - 1. Explain For-Loop and While-Loop structure of MATLAB with example.
 - 2. Obtain Gauss backward interpolation formula.
 - 3. Obtain Trapezoidal rule for numerical integration.
 - 4. Use Talyor's series method to compute y (0.1) and y (0.3) correct to five decimal places, if y(x) satisfies

$$\frac{dy}{dx} = xy - 2x \text{ with } y(0) = 3.$$

- 5. Obtain Bessel's formula for central difference interpolation.
- 3 (a) Write the answer any three: (Each 2 marks)

6

- 1. Evaluate $\sqrt{37}$ using Newton's formula correct upto seven decimal.
- 2. Define Shift operator.
- 3. What are the assumptions on which the interpolation and extrapolation are based?
- 4. Find by the interaction method, the root near 3.8 of the equation $2x \log_{10} x = 7$ correct upto four decimal.
- 5. Write Logical Operators of MATLAB.
- 6. Explain MATLAB function diff.

- (b) Write the answer any three: (Each 3 marks)
 - 1. Explain Newton Raphson method.
 - 2. Explain MATLAB function mean and median.
 - 3. Obtain Simpson's $\frac{1}{3}$ rule for numerical integration.
 - 4. Apply Euler's Maclurin sum formula to find the sums $\frac{1}{11^3} + \frac{1}{12^3} + \dots + \frac{1}{50^3}$ correct to 5 significant figures.
 - 5. Explain False position method.
 - 6. Obtain Gregory-Newton's Forward Interpolation formula.
- (c) Write the answer any two: (Each 5 marks)

10

9

- 1. Explain number display format of MATLAB.
- 2. Explain If-Else-End structure of MATLAB with example.
- 3. Given the differential equation $\frac{dy}{dx} = x y$, with the initial condition y = 1 when x = 0, use Picard's method to obtain y for x = 0.2 correct to five decimal places.
- 4. Obtain Gauss forward interpolation formula.
- 5. Obtain Stirling formula for central difference interpolation.